

Mark Scheme (Results)

Summer 2019

Pearson International Advanced Level In Chemistry (WCH04) Paper 01General Principles of Chemistry I - Rates, Equilibria and Further Organic Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code WCH04_01_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
 - i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
 - ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
 - iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Answer	Mark
1	The only correct answer is C	(1)
	A is not correct because a primary halogenoalkane reacts by an $S_N 2$ mechanism so would be second order.	
	B is not correct because a primary halogenoalkane reacts by an $S_N 2$ mechanism so would be second order.	
	D is not correct because a secondary halogenoalkane reacts by a mixture of mechanisms.	

Question Number	Answer	Mark
2	The only correct answer is C	(1)
	A is not correct because the formation of HI and/or nitric acid would not increase the pH.	
	B is not correct because there is no change in mass.	
	D is not correct because iodine is not formed.	

Question Number	Answer	Mark
3	The only correct answer is B	(1)
	A is not correct because the rate is independent of iodine concentration.	
	C is not correct because iodine concentration decreases with time.	
	D is not correct because iodine concentration decreases with time.	

Question Number	Answer	Mark
4	The only correct answer is C	(1)
	A is not correct because this plot would make the gradient $-R/E_a$.	
	B is not correct because this plot would make the gradient $+R/E_a$.	
	D is not correct because this plot would make the gradient $+E_{\alpha}/R$	

Question Number	Answer	Mark
5	The only correct answer is A	(1)
	B is not correct because ice is less disordered than water, and the change is exothermic so the entropy change of the surroundings is positive	
	C is not correct because the change is exothermic so the entropy change of the surroundings is positive	
	D is not correct because ice is less disordered than water	

Question Number	Answer	Mark
6	The only correct answer is B	(1)
	A is not correct because C₂H₅COOH is not acting as a proton donor.	
	C is not correct because neither species is acting as a proton donor.	
	D is not correct because CH₃COO⁻ is not acting as a proton donor.	

Question Number	Correct Answer	Mark
7	The only correct answer is B	(1)
	A is not correct because litmus does not give a sharp colour change at the end point in a titration	
	C is not correct because the pK_a of phenolphthalein is above the range pH 4-7	
	D is not correct because the pK_a of alizarin yellow R is above the range pH 4-7	

Question Number	Correct Answer	Mark
8	The only correct answer is D	(1)
	A is not correct because this is –log 0.2 whereas $[H^+]$ is 10^{-3}	
	B is not correct because this would be the pH if $[H^+] = 10^{-1}$	
	C is not correct because this is 2+(-log 0.2)	

Question Number	Correct Answer	Mark
9	The only correct answer is B	(1)
	A is not correct because CH₃COCl produces a strong acid with water	
	C is not correct because CH₃COCl produces a strong acid with water and sodium ethanoate has a higher pH than equimolar ethanoic acid	
	D is not correct because ethanoic acid has a lower pH than equimolar sodium ethanoate	

Question Number	Correct Answer	Mark
10	The only correct answer is B	(1)
	A is not correct because the units are inverted.	
	C is not correct because there is 1 mol of product in solution and 2 mol of reactant in solution.	
	D is not correct because the number of moles in solution is not the same on each side of the equation.	

Question Number	Correct Answer	Mark
11	The only correct answer is A	(1)
	B is not correct because the yield increases as pressure increases.	
	C is not correct because the yield increases as the temperature decreases.	
	D is not correct because the yield increases as pressure increases and the temperature decreases.	

Question Number	Correct Answer	Mark
12	The only correct answer is A	(1)
	B is not correct because $\Delta S_{\text{surroundings}}$ does not equal $+ \Delta H/T$.	
	C is not correct because $\Delta S_{\text{surroundings}}$ does not equal – $T\Delta H$.	
	D is not correct because $\Delta S_{\text{surroundings}}$ does not equal $+T\Delta H$.	

Question Number	Correct Answer	
13	The only correct answer is C	(1)
	A is not correct because halogenoalkanes are insoluble in water	
	B is not correct because halogenoalkanes are insoluble in water	
	D is not correct because the ester is much less soluble than the acid	

Question Number	Correct Answer	Mark
14	The only correct answer is D	(1)
	A is not correct because aldehydes do not react with PCl₅ to form acyl chlorides.	
	B is not correct because the reaction would form chloroethane.	
	C is not correct because ketones do not react with PCl₅ to form acyl chlorides.	

Question Number	Correct Answer	Mark
15	15 The only correct answer is C	
	A is not correct because propanoyl chloride is needed	
	B is not correct because propanoyl chloride is needed	
	D is not correct because ethylamine is needed	

Question Number	Correct Answer	Mark
16	The only correct answer is B	(1)
	A is not correct because carboxylic acids do not form ester linkages with halogenoalkanes	
	C is not correct because acyl chlorides do not form ester linkages with carboxylic acids	
	D is not correct because esters do not form ester linkages with acyl chlorides	

Question Number	Correct Answer	Mark
17	The only correct answer is D	(1)
	A is not correct because hexane is less polar than pentan-1-ol	
	B is not correct because hex-1-ene is less polar than pentan-1-ol	
	C is not correct because pentane is less polar than pentan-1-ol	

Question Number	Answer	Mark
18	The only correct answer is D	(1)
	A is not correct because the two H atoms are on the same side of the double bond.	
	B is not correct because the double bond is on C9.	
	C is not correct because the two H atoms are on the same side of the double bond.	

Question Number	Answer	Mark
19	The only correct answer is A	(1)
	B is not correct because this fatty acid would not form in transesterification	
	C is not correct because this ester would not form in transesterification	
	D is not correct because propane-1,2,3-triol is not used as a fuel	

Correct Answer	Mark
The only correct answer is C	(1)
A is not correct because infrared is not used	
B is not correct because microwaves are not used	
D is not correct because ultraviolet radiation is not used	
1	The only correct answer is C A is not correct because infrared is not used B is not correct because microwaves are not used

Total for Section A = 20 marks

Section B

Question Number	Acceptable Answers	Reject	Mark
21(a)	$2NO + 2H_2 \rightarrow N_2 + 2H_2O$ ALLOW multiples, including $NO + H_2 \rightarrow \frac{1}{2} N_2 + H_2O$ reversible reactions IGNORE state symbols even if incorrect conditions even if incorrect Comment: Allow suspiciously large subscripts after elements	Equations including N	(1)

Question Number	Acceptable Answers		Reject	Mark
21(b)(i)	Order wrt NO = 2			(3)
	and			
	Order wrt $H_2 = 1$	(1)		
	(Comparing Experiments 1 and 3:) when [NC is increased ×4 (keeping [H ₂] constant) rate increases ×16 (Comparing experiments 1 and 2:) when [NC is doubled rate would increase x4; rate actually increases x8, so doubling [H ₂] must also double rate OWTE (1)	(1) O]		
	Marks are independent, M2 and M3 can be given even if M1 is incorrect ALLOW arrows and annotations on tables showing which results have been used			
	Willett results have been used			

Question Number	Acceptable Answers	Reject	Mark
21(b)(ii)	rate = $k[NO]^2[H_2]^{(1)}$		(1)
	TE on incorrect orders in (b)(i)		
	IGNORE state symbols even if incorrect capital k in expression		

Question Number	Acceptable Answers	Reject	Mark
21(b)(iii)	$k = \frac{(5.5 \times 10^{-3})}{(0.0020)^2(0.020)}$		(2)
	$= 6.875 \times 10^{4} / 6.9 \times 10^{4} / 68750 / 69000 / 70000 $ (1)		
	$dm^6 mol^{-2} s^{-1}$ (1)		
	TE on rate equation in (b)(ii)		
	IGNORE SF Units in any order		

Question Number	Acceptable Answers	Reject	Mark
21(c)(i)	The possibility of three molecules / species / particles (of gas) colliding (in the right orientation) is low ALLOW There are three molecules / species / particles in the rate equation OR Third order reaction is unlikely (in a single step) ALLOW TE on incorrect rate equation e.g. "Hydrogen is not involved in the rate determining step"	Three compounds Three elements	(1)

Question Number	Acceptable Answers		Reject	Mark
21(c)(ii)	$N_2O_2 + H_2 \rightarrow N_2 + H_2O_2$ OR $N_2O_2 + H_2 \rightarrow N_2 + H_2O + O$ OR $N_2O_2 + H_2 \rightarrow N_2O + H_2O$ ALLOW $N_2O_2 + H_2 \rightarrow H_2N_2O_2$ Any balanced equation with one mole of each of N_2O_2 and H_2 on LHS (1)			(2)
	The rate equation must include all the species up to and including the rate determining step ALLOW TE on rate equation	(1)		

(Total for Question 21 =10 marks)

Question Number	Acceptable Answers	Reject	Mark
22(a)(i)	$K_a = [C_2H_5COO^-][H^+]$ $[C_2H_5COOH]$ OR $K_a = [C_2H_5COO^-][H_3O^+]$ $[C_2H_5COOH]$ ALLOW $C_2H_5CO_2^ K_a = [propanoate][H^+]$ $[propanoic acid]$ IGNORE state symbols even if incorrect balanced equations as working	Round brackets Just expressions including HA, A ⁻ and H ⁺ CH ₃ COOH/ CH ₃ COO ⁻ $K_a = [H^+]^2$ [C ₂ H ₅ COOH]	(1)

Question Number	Acceptable Answers		Reject	Mark
22(a)(ii)	$[H^+]^2 = (K_a \times [C_2H_5COOH])$			(3)
	OR			
	$[H^+] = \sqrt{(1.30 \times 10^{-5} \times 0.120)}$			
	OR			
	$[H^+] = \sqrt{(1.56 \times 10^{-6})}$	(1)		
	=1.249 × 10 ⁻³	(1)		
	pH = (-log[H ⁺] = 2.9034) = 2.90 / 2.9	(1)		
	Correct answer with no workings so 3 Hydrogen ion concentration with no workings scores 2			
	ALLOW (Un)rearranged expression with substituted numbers for M1 TE on [H ⁺] for M3 from M2 unless pH > 7 or pH	I < -1		
	IGNORE SF except 1 SF			

Question Number	Acceptable Answers		Reject	Mark
22(b)(i)	$[C_2H_5COOH] = [C_2H_5COO^-]$			(2)
	$[H^+] = K_a$			
	ALLOW pH = pK_a	(1)		
	(So pH = $-\log 1.30 \times 10^{-5}$)			
	= 4.8861 / 4.89 / 4.9	(1)		
	Correct answer without working sco	ores 2		
	IGNORE			
	SF except 1 SF			

Question Number	Acceptable Answers	Reject	Mark
*22(b)(ii)	The mixture contains a (large) reservoir of propanoic acid and (sodium) propanoate		(3)
	ALLOW large amounts of weak acid/ conjugate base	Equal amounts	
	ALLOW "roughly equal amounts" (1)	Just "H ⁺ reacts with	
	When OH ⁻ / base is added it reacts with propanoic acid	OH-"	
	OR		
	Equilibrium shifts to the right to produce more acid as H ⁺ reacts with OH ⁻		
	OR		
	$OH^- + C_2H_5COOH \rightarrow C_2H_5COO^- + H_2O$		
	OR	remains	
	When OH ⁻ added, [C ₂ H ₅ COOH] falls slightly and [C ₂ H ₅ COO ⁻] rises slightly (1)	constant	
	(pH depends on) ratio of propanoic acid to propanoate ions is almost unchanged / changes by a small amount (1)		
	IGNORE discussion on effect of adding acid /H ⁺		
	ALLOW for 1 mark (if no other mark is scored) the buffer region resists a change in pH		
	ALLOW Incorrect formula for propanoic acid Use of HA / A ⁻		

Question Number	Acceptable Answers		Reject	Mark
22b(iii)	Mol propanoic acid = (25 x 0.120/1000)			(2)
	= 3.00 x 10 ⁻³ (mol)	(1)		
	Volume NaOH = (3.00 x 10 ⁻³ /0.150)			
	= 0.02(0) dm ³ / 20.(0) cm ³	(1)		
	MUST have units for M2 IGNORE SF			
	ALLOW TE from M1 to M2			

Question Number	Acceptable Answers	Reject	Mark
22b(iv)	(Excess NaOH = 20.0 cm ³ in total volume of 65 cm ³)		(3)
	$[OH^{-}] = 20.0 \times 0.15$ = 0.046154		
	ACCEPT Denominator that is 45 more than the volume (× concentration) e.g. $10 \times 0.15 = 0.027$		
	55 (1)		
	EITHER		
	$[H^+] = \frac{1 \times 10^{-14}}{0.046154} = 2.1667 \times 10^{-13}$		
	pH = $(-\log 2.1667 \times 10^{-13})$)	
	= 12.6642/12.7 (1)	12 or 13	
	OR		
	pOH = -log 0.046154 = 1.3358 pH = 14 - 1.3358 = 12.6642/12.7 (1)		
	Answer must be to at least 1 decimal place		
	ALLOW TE on incorrect calculated moles of NaOH in M1 for M2		
	TE on incorrect H ⁺ conc ⁿ for M3 if calculated pH is >7	,	
	Correct answer with no working scores 3		

Question Number	Acceptable Answers	Reject	Mark
22(c)(i)	Curve starting at pH 1.75–3.5 and finishing at pH 8.75-12.25 (the half way point in each box) (1)	Curve for di- or triprotic acids for M1 and M2	(2)
	Gradual upward (or downward if plotted backwards) slope at pH 6-8 (with point of inflection – midpoint of the S – at pH7 and about 25 cm³ (22.5-27.5cm³) (1) e.g.	Obvious vertical for M2	
	3.5 0 10 20 30 40 volume of ammonia / cm ³		

Question Number	Acceptable Answers	Reject	Mark
22(c)(ii)	Both the acid and the base are weak so no sharp change in pH / colour of indicator occurs (when acid has completely reacted)		(1)
	OR		
	pH/ colour of indicator changes gradually (throughout).	Just "no	
	OR	vertical	
	there will not be a rapid change of pH/ colour of indicator around the end point	region"	
	Must refer to change in pH/colour of indicator		
	No TE from graph		

(Total for Question 22 = 17 marks)

Question	Acceptable Answers	Reject	Mark
Number		,	
_	Add Brady's reagent / 2,4-dinitrophenylhydrazine (1) ALLOW 2,4-DNP(H) Yellow/ orange/ red and precipitate (1) ALLOW crystals / ppt / solid for precipitate ALLOW (if no other marks awarded) Add Fehling's/ Benedict's/ Tollens' solution with correct observation for 1 mark Fehling's/ Benedict's – Red/brown ppt Tollens – silver mirror IGNORE Heat	Use of acidified dichromate Brown	(2)

Question Number	Acceptable Answers	Reject	Mark
23(b)	Lithium aluminium hydride/ lithium tetrahydridoaluminate((III))/ LiAlH4 IGNORE Lithal (In dry ether/ ethoxyethane) OR Sodium borohydride/ sodium tetrahydridoborate/ NaBH4 (in ethanol or water)	Reject aqueous solution	(1)
	Note: Allow phonetic spellings		

Question Number	Acceptable Answers		Reject	Mark
23(c)(i)	CHI₃ / triiodomethane ((1)		(2)
	ALLOW			
	lodoform / Cl₃H / structural formulae			
	HCOONa / Sodium methanoate (1)			
	ALLOW			
	Methanoic acid			
	If both name and formula are given, both must be correct			

Question Number	Acceptable Answers	Reject	Mark
23(c)(ii)	(Pale) yellow precipitate		(1)
	ALLOW crystals / solid / ppt		
	IGNORE Medicinal smell		

Question Number	Acceptable Answers	Reject	Mark
23(d)(i)	Nucleophilic addition	Homolytic S _N 1	(1)
	ALLOW Nucleophile addition and phonetic spellings		
	IGNORE Heterolytic		

Question Number	Acceptable Answers	Reject	Mark
23(d)(ii)	Partial charges shown on C=O and lone pair on carbon of CN ⁻ (1)	missing charge on CN	(4)
	Arrow from lone pair on CN ⁽⁻⁾ to carbonyl C and arrow from C=O bond to O or just beyond (1)	curly arrow from N	
	Correct intermediate with O ⁻ (1)	bond from N to C of C-O ⁻ in intermediate	
	IGNORE vertical connectivity of CN	H⁺ on HCN	
	Arrow from (lone pair on) O ⁻ to H of HCN and arrow from H-C bond to CN and structure of product		
	CH3- 4-01 H-CEN -> CH3-4-0H		
	IGNORE H ^{δ+} and CN ^{δ-} on HCN		
	OR		
	Arrow from (lone pair on) O ⁻ to H ⁺ and structure of product (1)		
	CH3- c-07 H → CH3- c-0H		

Question Number	Acceptable Answers	Reject	Mark
23(d)(iii)	A mixture containing equal amounts of (the two) enantiomers/ optical isomers ALLOW 50:50 or 1:1 as equal equimolar concentration for amounts D & L isomers (or lowercase) + & – isomers		(1)
	References to plane polarised light		

Question Number	Acceptable Answers	Reject	Mark
23(d)(iv)	The aldehyde group / carbonyl group / reaction site is planar (1) ALLOW '(trigonal) planar about the C=O bond' OR carbonyl carbon is (trigonal) planar So CN- can attack (equally) from above or below / from either side (1) ALLOW nucleophile for CN- top / bottom for M2 'can attack from both sides' for M2 Mark independently	"Ethanal is a planar molecule" "The intermediate is planar" carbocation	(2)
	(Tatal for	0	

(Total for Question 23 = 14 marks)

Question Number	Acceptable Answers		Reject	Mark
24(a)(i) ΔH_f KIO and ΔH_f KI ΔH_{reacti} = (+)17 ALLOV Correct IGNOF SF exce ALLOV mol- J/mol	rept 1 SF V V if no other mark awarded -173.5	(1) (1)	Incorrect	(2)

Question Number	Acceptable Answers		Reject	Mark
24(a)(ii)	S° KIO ₃ = 151.5 (J mol ⁻¹ K ⁻¹) and			(2)
	S° KI = 106.3 (J mol ⁻¹ K ⁻¹)	(1)		
	$\Delta S^{\text{e}}_{\text{system}} = (106.3 + 3 \times 102.5 - 151.5)$			
	= (+) 262.3/ (+)262 (J mol ⁻¹ K ⁻¹) / / (+) 0.262 kJ mol ⁻¹ K ⁻¹	(1)	Incorrect units	
	ALLOW TE for incorrect values of S ^o			
	Correct answer without working scores 2			
	IGNORE SF except 1 SF			

Question Number	Acceptable Answers	Reject	Mark
24(a)(iii)	Minimum temperature is when $\Delta S_{total} = 0$, which is where $\Delta S_{system}^{\Theta} = \Delta H/T$		(2)
	ALLOW		
	This principle stated or used		
	OR		
	$\Delta G = \Delta H - T \Delta S_{\text{system}} = 0 $ (1)		
	T= $(\Delta H/ \Delta S^{\circ}_{system})$ = $(173.5 \times 1000 / 262.3)$ = 661.456 = $661.5 (K) / 662 (K)$ (1)	661 (as this would give a negative ΔS _{total} or a positive ΔG	
		Negative values	
	Less than 4SF must be rounded up		
	ALLOW TE on (a)(i) and (a)(ii) values ALLOW 388(°C)		
	Correct answer without working scores 2		
	IGNORE SF other than 1SF Rounding of more than 3SF		

Question Number	Acceptable Answers	Reject	Mark
24(a)(iv)	The activation energy is high ALLOW Not enough energy to overcome E_a Reaction is kinetically stable / kinetically unfavourable / inert Energy needed to break the bond on LHS is too high IGNORE Reference to catalyst	Because conditions are not standard Just "Reactants are kinetically stable" Just "Temperature is not high enough"	(1)

Question Number	Acceptable Answers	Reject	Mark
24(b)(i)	Lattice energy = $\Delta H_{\text{hydration}} \text{ K}^+ + \Delta H_{\text{hydration}} \text{ I}^ \Delta H_{\text{solution}}$		(2)
	OR		
	$\Delta H_{\text{solution}} = -\text{Lattice energy} + \Delta H_{\text{hydration}} \text{ K}^+ + \Delta H_{\text{hydration}} \text{ I}^-$		
	OR		
	$\Delta H_{\text{hydration}} \text{ K}^+ + \Delta H_{\text{hydration}} \text{ I}^- = \text{Lattice energy} + \Delta H_{\text{solution}}$		
	Note: Take " $\Delta H_{\text{hydration}}$ " to mean sum of hydration energies		
	ALLOW Labelled cycle for M1 (1)		
	= $(-320 - 308 - 20.3)$ = $-648.3 / -650 \text{ (kJ mol}^{-1})$ (1)		
	Correct answer without working scores 2		
	IGNORE SF except 1 SF incorrect units		
	ALLOW if no other mark awarded -607.7 / -608 or (+) 648.3 / (+) 650 for 1 mark	+608	

Question Number	Acceptable Answers	Reject	Mark
24(b)(ii)	Radius of Na ⁺ / sodium ion < radius of K ⁺ / potassium ion (1)	Atomic radius	(2)
	Charge density of Na ⁺ greater than K ⁺ OR	References to covalency loses M2	
	ions in NaI lattice are closer together than in KI lattice		
	OR		
	so more energy is released on formation of the lattice from the gaseous ions		
	OR		
	so (electrostatic) forces between ions are stronger (1)		

Total for Question 24 = 11 marks)
Total for Section B = 52 marks

Question Number	Acceptable Answers	Reject	Mark
25(a)(i)	K _p = <u>pCH₃OH</u> pCO x (pH ₂) ² ALLOW Curved brackets (or no brackets) around any species P as subscript, superscript, lower or upper case or pp	Square brackets	(1)

	INIA ANGWAR	2		Reject	Mark
Acceptable Answers			Reject	WIGHT	
and			(1)		(5)
		-	l pressures		
	in fractions o	r calculated)			
c.8.	СО	H ₂	CH₃OH		
Mol	18.5	13.5	0		
at					
	12.0	2.5			
	13.0	2.5	5.5		
eqm					
pp	<u>13 x 60</u> =	<u>2.5 x 60</u> =	<u>5.5 x 60</u> =		
	37.143	7.1429	15./14		
•	(15.714)	v2	(4)		
(37	7.143)(7.1429)-	(1)		
= 8.2923	3 x 10 ⁻³				
= 8.29 x	10 ⁻³ / 0.0082	9 atm ⁻²			
Value to	3 SF				
ALLOW 8	8.30 x 10 ⁻³		(1)		
Units ALLOW ⁻	TE from (i)		(1)		
Correct final answer with units but no working scores 5 marks					
IGNORE SF on int		teps except 1S	F		
	and Mol H ₂ = (Total m (can be id) e.g. Mol at start Mol at eqm pp K _p = (37) = 8.2923 = 8.29 x Value to ALLOW id Correct scores 5	Mol H ₂ = 2.5 (Total mol at eqm = 2 (can be in fractions o (1) e.g. CO Mol	and Mol H ₂ = 2.5 (Total mol at eqm = 21) and partial (can be in fractions or calculated) (1) e.g. CO H ₂ Mol 18.5 13.5 at start Mol 13.0 2.5 at eqm pp $\frac{13 \times 60}{21} = \frac{2.5 \times 60}{21} = \frac{21}{37.143}$ $K_p = \frac{(15.714)}{(37.143)(7.1429)^2}$ = 8.29 × 10 ⁻³ / 0.00829 atm ⁻² Value to 3 SF ALLOW 8.30 × 10 ⁻³ Units ALLOW TE from (i) Correct final answer with units but scores 5 marks	and Mol H_2 = 2.5 (1) (Total mol at eqm = 21) and partial pressures (can be in fractions or calculated) (1) e.g. CO H_2 CH_3OH Mol 18.5 13.5 0 at start Mol 13.0 2.5 5.5 at eqm pp $\frac{13 \times 60}{21} = \frac{2.5 \times 60}{21} = \frac{5.5 \times 60}{21} = \frac{21}{21}$ 37.143 7.1429 15.714 $K_p = \frac{(15.714)}{(37.143)(7.1429)^2}$ (1) = 8.2923 × 10 ⁻³ / 0.00829 atm ⁻² Value to 3 SF ALLOW 8.30 × 10 ⁻³ (1) Units (1) ALLOW TE from (i) Correct final answer with units but no working scores 5 marks	and Mol H_2 = 2.5 (1) (Total mol at eqm = 21) and partial pressures (can be in fractions or calculated) (1) e.g. CO H ₂ CH ₃ OH Mol 18.5 13.5 0 at start Mol 13.0 2.5 5.5 at eqm pp 13 x 60 = 2.5 x 60 = 21 21 37.143 7.1429 15.714 K_p = $\frac{(15.714)}{(37.143)(7.1429)^2}$ (1) = 8.2923 x 10 ⁻³ = 8.29 x 10 ⁻³ / 0.00829 atm ⁻² Value to 3 SF ALLOW 8.30 x 10 ⁻³ (1) Units (1) ALLOW TE from (i) Correct final answer with units but no working scores 5 marks

Question Number	Acceptable Answers		Reject	Mark
25(a)(iii)	ΔH must be negative / exothermic (as K_p greater) /as reaction proceeds further at lower temperature $\Delta S_{\text{surroundings}} = -\Delta H/T \text{ so must be positive}$	(1)		(2)
	ALLOW $\Delta S_{surroundings}$ must be positive / >0 Marks are independent ALLOW if no other mark is awarded: " $\Delta S_{surroundings}$ must be negative as ΔH is positive" for 1 mark			

Question Number	Acceptable Answers	Reject	Mark
25(b)(i)	Contains (–)COOH/ carboxylic acid (1) ALLOW carboxyl Contains a ketone / R—C—R' (1)	tertiary alcohol ether carbonyl Just C=O	(2)

Question Number	Acceptable Answers	Reject	Mark
25(b)(ii)	CH₃CO([†])	CH_2COH $C_2H_3O^+$	(1)
	ALLOW	C21 13O	
	CH₃CH₂CH₂(⁺)	Negative	
	Displayed or skeletal formula	ions	
		$C_3H_7^+$	
		displayed	
		formula with	
		hydrogens	
		missing	

Question Number	Acceptable Answers	Reject	Mark
25(b)(iii)	There are 4 hydrogen environments (in ratio 3:2:2:3) (1)		(4)
	ALLOW hydrogen environments clearly shown on the diagram		
	The (two) triplets are due to -CH ₂ CH ₂ -OR The (two) triplets are due to 2H atoms next to a -CH ₂ (1)		
	The (two) singlet(s) are due to 3H atoms with no adjacent H atoms OR The (two) singlets are due to 3H atoms in H ₃ C-C=O (shift 2.2 ppm) and H ₃ C-O (3.7 ppm) (1)		
	ALLOW suitable groups of hydrogens clearly identified and labelled as singlets/triplets on the structure for 3 marks		
	Identity of Q : CH ₃ COCH ₂ CH ₂ COOCH ₃ (1)		

Question Number	Acceptable Answers	Reject	Mark
_	CH ₃ COCH ₂ CH ₂ COOH + CH ₃ OH ⇌ CH ₃ COCH ₂ CH ₂ COOCH ₃ + H ₂ O Structure of carboxylic acid P ALLOW TE on incorrect formula in (b)(iii) (1) Products of balanced equation ALLOW Formation of any methyl ester (1) ALLOW displayed and skeletal formulae → for reversible arrow	molecular formulae	(2)
	IGNORE Catalysts Reaction conditions NOTE: Correct structure seen here can be awarded for (b)(iii)		

Question Number	Acceptable Answers	Reject	Mark
25(b)(v)	CH ₃ COCH ₂ CH ₂ COCI	C-O-Cl	(1)
	ALLOW Any acyl chloride Names of acyl chlorides Displayed or skeletal formulae		
	RCOCI IGNORE Molecular formula		

(Total for Question 25 = 18 marks) Total for Section C = 18 marks